Full Scale Simulation of an Integrated Monolithic Heat Sink for Thermal Management of a High Power Density Gan-sic Chip
نویسندگان
چکیده
Advances in manufacturing techniques are inspiring the design of novel integrated microscale thermal cooling devices seeking to push the limits of current thermal management solutions in high heat flux applications. These advanced cooling technologies can be used to improve the performance of high power density electronics such as GaN-based RF power amplifiers. However, their optimal design requires careful analysis of the combined effects of conduction and convection. Many numerical simulations and optimization studies have been performed for single cell models of microchannel heat sinks, but these simulations do not provide insight into the flow and heat transfer through the entire device. This study therefore presents the results of conjugate heat transfer CFD simulations for a complex copper monolithic heat sink integrated with a 100 ∗Address all correspondence to this author. †Current affiliation: Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027 ‡Visiting researcher at Stanford University. Permanent address: Von Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, 1640 Rhode-SaintGenese Belgium micron thick, 5 mm by 1 mm high power density GaN-SiC chip. The computational model (13 million cells) represents both the chip and the heat sink, which consists of multiple inlets and outlets for fluid entry and exit, delivery and collection manifold systems, and an array of fins that form rectangular microchannels. Total chip powers of up to 150 W at the GaN gates were considered, and a quarter of the device was modeled for total inlet mass flow rates of 1.44 g/s and 1.8 g/s (0.36 g/s and 0.45 g/s for the quarter device), corresponding to laminar flow at Reynolds numbers between 19.5 and 119.3. It was observed that the mass flow rates through individual microchannels in the device vary by up to 45%, depending on the inlet/outlet locations and pressure drop in the manifolds. The results demonstrate that full device simulations provide valuable insight into the multiple parameters that affect cooling performance. 1 Copyright © 2015 by ASME
منابع مشابه
17.3 Temperature Measurement and Modeling of Low Thermal Resistance GaN-on-Diamond Transistors
Replacing SiC substrates with the highest thermal conductivity material available, diamond (κ up to 2000 W/mK), will result in significantly lower thermal resistance AlGaN/GaN HEMTs. In this work we combine Raman thermography and thermal simulation to assess the thermal resistance of state-of-the-art GaN-ondiamond HEMTs. INTRODUCTION The RF output power density achievable for GaN-based high ele...
متن کاملA Review of GaN on SiC High Electron-Mobility Power Transistors (HEMTs) and MMICs
Gallium–nitride power transistor (GaN HEMT) and integrated circuit technologies have matured dramatically over the last few years, and many hundreds of thousands of devices have been manufactured and elded in applications ranging from pulsed radars and counter-IED jammers to CATV modules and fourth-generation infrastructure base-stations. GaN HEMT devices, exhibiting high power densities coupl...
متن کاملChoice of Substrate for GaN Based HEMT Devices Using Thermal Modelling
Introduction : Gallium Nitride (GaN) is a very interesting and highly promising material system for both optical and microwave high-power electronic applications. The large band gap of GaN makes it a suitable choice for high frequency applications. Thermal evaluation is pivotal in the design, characterization and reliability evaluation of semiconductor devices and circuits. The role it plays is...
متن کاملA Universal Soi-based High Temperature Gate Driver Integrated Circuit for Sic Power Switches with On-chip Short Circuit Protection
In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost hightemperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron sili...
متن کاملGraphene quilts for thermal management of high-power GaN transistors.
Self-heating is a severe problem for high-power gallium nitride (GaN) electronic and optoelectronic devices. Various thermal management solutions, for example, flip-chip bonding or composite substrates, have been attempted. However, temperature rise due to dissipated heat still limits applications of the nitride-based technology. Here we show that thermal management of GaN transistors can be su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015